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1  Iterative design 
 
The enormous cost of fielding a complex 
human-machine system can be attributed in part 
to the cost of discovering and eliminating 
usability problems in its design.  In general, 
evaluation costs increase as the design process 
progresses.  By the time a system has come into 
use, fixing a design problem involves not only 
redesigning and re-testing, but also modifying 
fielded devices and possibly retraining users.  To 
manage engineering design costs, large new 
systems are usually developed by a process of 
iterative design (Gould, 1988).  As a design 
progresses from idea to fully fielded system, 
decisions are evaluated at each stage.  If 
problems are discovered during evaluation, the 
system is partially redesigned and further 
evaluation takes place on the new version.  This 
process is repeated until a satisfactory version 
results.  Of course, the ability to determine 
whether the current version is satisfactory is 
limited by the effectiveness of the evaluation 
methods employed.  
 
Evaluation methods applicable at a late design 
stage are generally more expensive but also 
more effective than methods that can be used at 
earlier stages.  In particular, once a working 
prototype of the new system has been 
constructed, evaluation by user testing becomes 
possible.  Observing users employing the system 
in a wide range of scenarios and operating 
conditions can tell a designer a great deal about 
how well it will function once in the field.  This 
process is widely recommended in discussions of 
human factors and routinely practiced in the 
design of safety-critical and high-distribution 
systems.   
 
However, user testing suffers from a number of 
drawbacks and limitations.  For instance, 

subjects are often more highly motivated than 
true end-users and, in some cases, become too 
knowledgeable about the developing system to 
be useful in discovering certain problems. 
Another drawback is cost.  When designing new 
air traffic control systems, for example, such 
tests typically require hiring highly paid expert 
controllers as subjects, often for extended 
periods (Shafto, 1990; Remington, 1990b).  The 
limited amount of testing that results from high 
cost can stifle innovation, slow development, 
and even compromise safety. 
 
Designers can reduce the amount of user testing 
required by discovering problems early in the 
design process, and thus reducing the number of 
design iterations.  To discover problems with 
usability, the primary early-phase evaluation 
method involves checking the design against 
human factors guidelines contained in numerous 
handbooks developed for that purpose (Smith, 
1986).  Guidelines have proven useful for some 
design tasks, but have a number of fairly well-
known problems (Mosier, 1986). In particular, 
guidelines focus on static, relatively superficial 
factors affecting human-machine performance 
such as text legibility and color discrimination.   
But when addressing topics relating to the 
dynamic behavior of a system or to the mental 
activities of the user, guidelines are often 
lacking or are too general to be of much use.  
Thus, “for the foreseeable future, guidelines 
should be considered as a collection of 
suggestions, rather than distilled science or 
formal requirements.  Understanding users, 
testing, and iterative design are indispensable, 
costly necessities" (Gould, 1988). 
 
Scenario-based approaches, such as Cognitive 
Walkthrough (Polson et al., 1992), “thinking 
aloud,” and human simulation modeling, offer 
alternative methods for early-stage design 



evaluation.  These techniques trade off some of 
the guideline-based method’s generality for 
greater sensitivity to human cognitive factors 
and for an increased ability to predict 
performance in complex, dynamic task domains.  
The idea of a scenario-based approach is to 
achieve some of the benefits of user testing at an 
early design stage when no usable prototype has 
been constructed.  Designers follow the behavior 
of a real or hypothetical user employing 
imaginary or simulated equipment to achieve 
specified task goals in specified operating 

conditions. 
 
Focusing on specific scenarios allows designers 
to consider situation-dependent aspects of 
performance such as the varying relevance of 
different performance variables, the effects of 
changing workload, and the likelihood and 
consequences of interactions between a user’s 
tasks.  However, complexity and dynamic 
elements in a task domain pose difficulties for 
any scenario-based approach.  While an 
improvement over guidelines in this respect, all 
of these approaches become more difficult to use 
in more demanding task domains as task 
duration, situation complexity, number of actors, 
number of activities that each actor must 
perform, and the number of scenarios that need 
to be considered all increase. 
 
By exploiting the computer’s speed and 
memory, human simulation modeling 
overcomes obstacles inherent in other scenario-
based methods and thus has the greatest 
potential for predicting performance in more 
demanding task environments.  A large, 
accurate memory overcomes the problem of 
tracking innumerable scenario events.  
Processing speed helps compensate for the need 
to examine more scenarios by, in principle, 
allowing each scenario to be carried out more 
quickly than in real-time.  The computer’s 

ability to function continuously adds further to 
the number of scenarios that may be explored. 
However, despite its potential, human 
simulation has been used to inform design 
almost exclusively in simple design domains – 
i.e. domains where tasks are brief, situational 
complexity is low,  few actors and forces 
determine events, and so on.   
 
Predicting performance in more challenging 
task domains requires an operator model that 
can function effectively in demanding task 

environments. Existing human models have 
typically lacked several very important 
capabilities including those needed to cope with 
varied forms of uncertainty inherent in many 
task environments; manage limited cognitive, 
perceptual, and motor resources; and, manage 
multiple, periodic tasks.  These capabilities have 
been incorporated into a human operator model 
called APEX (Freed, 1997a; Freed, 1997b) by 
adapting techniques from the field of artificial 
intelligence. 
 
APEX has been applied to simulate air traffic 
controller behavior (ATC), a task domain that 
presents a variety of challenges for human 
modeling.  Expert performance in this domain 
requires coping with uncertainty, managing 
limited resources, and managing multiple tasks 
–  challenges one would expect in many other 
design domains of practical interest.  This paper 
uses the air traffic control domain to illustrate a 
five-step process for employing APEX to aid 
design in a new domain. 
 

1.  Constructing a simulated world 
2.  Task analysis  
3.  Scenario development 
4.  Running the Simulation 
5.  Analyzing simulation results 

 
The paper is organized as follows.  Section 2 
describes a scenario that sometimes occurs in an 

Method when  redesign  
cost 

method use 
cost 

demanding task 
environments 

method 
effectiveness 

User testing late high high yes high 
Guidelines early low low no low 

Walkthrough early low low no medium 
Simulation early low medium yes medium 

Table 1   Comparison of usability evaluation methods 

 



APEX ATC simulation; the scenario illustrates 
how APEX simulation fits into the overall 
design process and exemplifies its use in 
predicting operator error.  Subsequent sections 
discuss each of the five steps listed above for 
preparing and using an APEX model to aid in 
design.  
 
2   Example scenario 
 
At a TRACON air traffic control facility, one 
controller will often be assigned to the task of 
guiding planes through a region of airspace 
called an arrivals sector.  This task involves 
taking planes from various sector entry points 
and getting them lined up at a safe distance 
from one another on landing approach to a 
particular airport.  Some airports have two 
parallel runways.  In such cases, the controller 
will form planes up into two lines. 

Occasionally, a controller will be told that one of 
the two runways is closed and that all planes on 
approach to land must be directed to the 
remaining open runway.  A controller's ability to 
direct planes exclusively to the open runway 
depends on remembering that the other runway 
is closed.  How does the controller remember 
this important fact?  Normally, the diversion of 
all inbound planes to the open runway produces 
an easily perceived reminder.  In particular, the 
controller will detect only a single line of planes 
on approach to the airport, even though two 
lines (one to each runway) would normally be 
expected (see figure 1a and 1b). 
 
 
 
 



 

 
However, problems may arise in conditions of 
low workload.  With few planes around, there is 
no visually distinct line of planes to either 
runway.  Thus, the usual situation in which both 
runways are available is perceptually 
indistinguishable from the case of a single 
closed runway (figure 1c and 1d).  The lack of 
perceptual support would then force the 
controller to rely on memory alone, thus 
increasing the chance that the controller will 
accidentally direct a plane to the closed runway. 
 
Designing to prevent such problems is not 
especially difficult – it is only necessary to 
depict the runway closure condition prominently 

on the controller’s information display.  The 
difficulty lies in anticipating the problem. By 
generating plausible scenarios, some containing 
operator error, APEX can direct an interface 
designer's attention to potential usability 
problems.   Though perhaps obvious from 
hindsight, such errors could easily be overlooked 
until a late stage of design.  
 
The ability to explicate events (including 
cognitive events) leading to the error can help 
indicate alternative ways to refine an interface. 
For example, one of the difficulties in designing 
a radar display is balancing the need to present a 
large volume of information against the need to 

(a) Normal workload: Both runways
open

(b) Low workload:  Both runways
open

(c) Normal workload: Left runway
closed

(d) Low workload: Left runway
closed  

Figure 1    Radar displays for approach control   



keep the display uncluttered. In this case, by 
showing how the error results from low traffic 
conditions, the model suggests a clever fix for 
the problem: prominently depict runway 
closures only in low workload conditions when 
the need for a reminder is greatest and doing so 
produces the least clutter. 
 
3   Constructing a simulated world 
 
The first step in simulating a human-machine 
system involves implementing software 
components specific to the task domain.   
Because the domain model used for simulation 
will almost inevitably require simplifying from 
the real domain, the exact nature of the tasks the 
simulated operators will have to carry out cannot 
be known until this step is accomplished.  
Constructing software to model the domain thus 
precedes representing task knowledge for the 
operator model.  This software, the simulated 
world, should include several components: 
 
??a model of the immediate task 

environment including equipment models 
specifying the behavior of devices employed 
by the simulated operator.  In ATC, these 
include a radar scope, two-way radio, and 
flightstrip board. 

??a model of the external environment 
specifying objects and agents outside the 
operator’s  immediate environment.  In 
ATC, the external environment comprises a 
region of airspace over which the controller 
has responsibility, airspace outside that 
region’s boundaries, a set of airplanes, and 
the aircrews controlling those airplanes. 

??a scenario control component that allows a 
user to define scenario events (e.g. airliner 
emergencies, runway closures) and scenario 
parameters (e.g. plane arrival rate) and then 
insures that these specifications are met in 
simulation.  See section 5.  

 
In addition, a simulation engine controls the 
passage of simulated time and mediates 
interactions within and among all simulated 
world and simulated operator components.  A 
simulation engine provided by the CSS 
simulation environment, discussed in section 6, 
is currently used to run the APEX human 
operator model as well as the air traffic control 
simulated world described below. 

 
3.1 Air traffic control – a brief overview 
 
APEX has been specified to carry out controller 
tasks at a simulated terminal radar control 
(TRACON) facility.  Controllers at a TRACON 
manage most of the air traffic within about 30 
miles of a major airport. This region is situated 
within a much larger airspace controlled by an 
air route traffic control center (ARTCC) – 
usually just called “Center.” TRACON space 
encompasses small regions of “Tower” airspace, 
each controlled by a major or satellite airport 
within the TRACON region.  Airspace within a 
TRACON is normally divided into sectors, each 
managed by separate controllers.  Pilots must 
obtain controller permission to move from one 
sector or airspace regime to another. 
 
Controllers and pilots communicate using a two-
way radio, with all pilots in a given airspace 
sector using the same radio frequency.  Since 
only one speaker (controller or pilot) can 
broadcast over this frequency at a time, 
messages are kept brief to help control 
“frequency congestion.”  Controllers manage 
events in their airspace primarily by giving 
clearances (authorizations) to pilots over the 
radio.  The most common clearances are: 
 
??handoffs: clearances that permit a plane to 

enter one’s airspace or, conversely, that tell 
a pilot about to exit one’s airspace to seek 
permission from the next controller 

??altitude clearances: authorizations to 
descend or climb.  Used at a TRACON 
mostly to manage takeoffs and landings, but 
also to maintain safe separation between 
planes. 

??vectors: i.e. clearances to change heading.  
The new heading may be specified as an 
absolute compass direction (e.g. “two seven 
zero” for East), as a turn relative to the 
current heading (e.g. “ten degrees left”), or 
with respect to a named geographical 
position appearing on navigational charts 
called a fix (e.g. “go direct to DOWNE”). 

??speed clearances: authorizations to change 
airspeed.  Managing airspeeds is the most 
difficult, but in principle the best, way 
maintain aircraft separation and to space 
arriving planes for landing. 

 



Clearances are issued according to a standard 
phraseology (Mills, 1992) to minimize 
confusion.  For example, to clear United 
Airlines flight 219 for descent to an altitude of 
1900 feet, a controller would say, “United two 
one niner, descend and maintain one thousand 
nine hundred.”  The pilot would then respond 
with a readback – “United two one niner, 
descending to one thousand nine hundred” – 
thus confirming to the controller that the 
clearance was received and heard correctly. 
 
The radar display is the controller’s main 
source of information about current airspace 
conditions.  Each aircraft is represented as an 
icon whose position on the display corresponds 
to its location above the Earth’s surface.  Planes 
equipped with a device called a C- or S-mode 
transponder, including all commercial airliners, 
cause an alphanumeric datablock to be 
displayed adjacent to the plane icon.  Datablocks 
provide important additional information 
including altitude, airspeed, airplane type (e.g. 
747), and identifying callsign.  Further 
information, including the airplane’s planned 
destination, can be found on paper flightstrips 
located on a “flightstrip board” near the radar 
display. 
 
As a plane approaches TRACON airspace from 
a Center region, it appears on the scope as a 
blinking icon.  The controller gives permission 
for the plane to enter – i.e. accepts a handoff – 
by positioning a pointer over the icon and then 
clicking a button.  The two-way radio on board 
the aircraft automatically changes frequency, 
allowing the pilot to communicate with the new 
controller.  Some planes are not equipped for 
automatic handoffs, in which case a specific 
verbal protocol is used:   
 

Example: as a small Cherokee aircraft with 
callsign 8458R approaches Los Angeles 
TRACON airspace, the pilot manually 
changes the radio setting and announces, 
“LA approach, Cherokee eight four five eight 
romeo, ten miles north of Pasadena, at four 
thousand feet, landing.” After detecting the 
plane on the radar scope, the controller 
announces “Cherokee eight four five romeo, 
radar contact,” thereby clearing the plane to 
operate in LA TRACON airspace. 

 

Standard operating procedures specify nearly 
every aspect of routine air traffic control at a 
TRACON, including the time window within 
which certain clearances should be issued and 
the flight paths planes should be made to 
traverse on departure from and landing 
approach to airports.  To continue with the 
previous example, the following event sequence 
illustrates a typical (though simplified) landing 
approach: 
 
??After announcing radar contact, the 

controller locates the Cherokee’s paper 
flight strip, determines that its destination 
is Los Angeles International airport 
(LAX), and selects an appropriate path 
from the plane’s present position.   

??The controller vectors the plane along the 
first leg on this path, saying “Cherokee five 
eight romeo, cleared direct for DOWNE.”  
The pilot acknowledges with a readback. 

??While the plane travels to the DOWNE fix, 
the controller observes it periodically to 
insure separation from other aircraft and to 
determine a safe time to clear it to the 
correct altitude for the LAX final 
approach.  When appropriate, the 
controller says, “Cherokee five eight 
romeo, descend and maintain one thousand 
nine hundred.” 

??As the Cherokee approaches DOWNE, the 
controller selects a preferred runway and 
then locates a gap in the line of planes 
approaching that runway. Vectors and 
speed clearances are used to maneuver it 
into the gap at safe distance from other 
aircraft.  For example, the plane may need 
to be 5 miles behind a 747 and 3 miles 
ahead of whatever follows. 

??Finally, as the plane nears LAX Tower 
airspace, the controller initiates a handoff 
to Tower by saying “Cherokee five eight 
romeo, cleared for ILS approach.  Contact 
tower at final approach fix.”   

 
3.2  ATC simulation: defining an airspace 
 
A TRACON is typically divided into separate 
airspace sectors, each handled by one or more 
individual controllers.  The number of sectors 
usually varies over the course of a day to reflect 
the amount of expected air traffic.  During high-
traffic periods, the overall airspace is divided 



into smaller sectors, thus reducing the number 
of planes any particular controller needs to 
handle.  For simplicity, the ATC simulation 
software divides the overall airspace into an 
arrivals sector and a departures sector, each 
handled by a single controller. Examples 
throughout this document will center on the 
arrival sector controller at Los Angeles 
TRACON. 
 
Users can easily define new airspace models in 
the simulated ATC world.  Such models consist 
of three kinds of objects: airports, fixes, and 
regions.  Defining an airport or fix causes all 
simulated pilots in the simulated ATC world to 
know its location; the controller can thus vector 
planes “direct to” that location.  Defining an 
airport also creates an ATC Tower to which the 
control of a plane can be handed off.  When 
control of a plane passes to an airport Tower, 
the plane icon on the simulated radar display 
disappears soon thereafter.   
 
Regions define operationally significant areas of 
airspace, possibly but not necessarily 
corresponding to legal divisions, and not usually 
encompassed by explicit boundaries on the 
display.  They provide a usefully coarse way to 
represent plane location, allowing a controller to 
refer to the area, e.g., “between DOWNE and 
LAX.”  The ability to consider airspace regions 
allows the simulated controller to assess air 
traffic conditions, facilitates detection of 
potential separation conflicts, and provides a 
basis for determining when planes have strayed 
from the standard flight path.  Regions are 
essentially psychological constructs and are 
therefore properly part of the agent model, not 
the domain model.   However, regions need to 
be represented in the same coordinate system as 
fixes and airports, making it convenient to 
specify all of them together. 
 
3.3 ATC simulation: controller tasks 
 
In the simulated world, as in the real world, the 
task of handling an arrival is entirely routine.  
Most planes arrive from Center space via one of 
a few pre-established airspace “corridors.”  The 
controller periodically checks for new arrivals, 
represented as blinking plane icons, and then 
accepts control from center by clicking a mouse 
button over their icons.  Once control of a new 

plane has been established, the paper flight strip 
associated with the plane is consulted to 
determine the flight’s planned destination and 
then marked (or moved) to indicate a change 
from pending to active status.  The simulated 
world uses “electronic flightstrips” in 
accordance with somewhat controversial 
proposals to transfer flightstrip information to 
the controller’s information display (Stein, 
1993; Vortac, 1993).  The task of routing a 
plane to its destination – either an airport or a 
TRACON airspace exit point – proceeds in 
simulation the same as it does in reality (see 
example in previous section).  
 
While controllers’ tasks are mostly simple and 
routine when considered in isolation the need to 
manage multiple tasks presents significant 
challenge.  For instance, the controller cannot 
focus on one aircraft for its entire passage 
through TRACON airspace, but must instead 
interleave effort to handle multiple planes.  
Similarly, routine scanning of the radar display 
to maintain awareness of current conditions 
often must be interrupted to deal with situations 
discovered during the scanning process, and 
then later resumed.   A further source of 
challenge is the possibility that certain unusual 
events may arise and require the controller to 
adapt routine behavior.  For example, if one of 
the runways at LAX closes unexpectedly, the 
controller will have to remember to route planes 
only to the remaining open runway and may 
have to reduce traffic flow in certain regions to 
prevent dangerous crowding. 
 
4 Task Analysis 
 
APEX, like other human simulation models, 
consists of general-purpose components such as 
eyes, hands, and working memory; it requires 
the addition of domain-specific knowledge 
structures to function in any particular task 
domain.  Task analysis is the process of 
identifying and encoding the necessary 
knowledge (Mentemerlo, 1978; Kirwan, 1992).   
For highly routinized task domains such as air 
traffic control, much of the task analysis can be 
accomplished easily and fairly uncontroversially 
by reference to published procedures.   
 
For instance, to clear an airplane for descent to a 
given altitude, a controller uses a specific verbal 



procedure prescribed in the controller 
phraseology handbook (see Mills, 1992) – e.g. 
“United two one niner, descend and maintain 
flight level nine thousand.”  Other behaviors 
such as maintaining an awareness of current 
airspace conditions do not correspond to any 
written procedures.  These aspects of task 
analysis require inferring task representation 
from domain attributes and general assumptions 
about adaptive human learning processes.  This 
section introduces the notational formalism 
(PDL) used in APEX to represent task analyses 
and discusses the role of adaptive learning in 
determining how agents come to perform tasks.



   
4.1 An expressive language for task analyses 
 
In APEX, tasks analyses are represented using 
the APEX Procedure Definition Language 
(PDL), the primary element of which is the 
procedure.  A procedure in PDL represents an 
operator’s knowledge about how to perform 
routine tasks.  For instance, a procedure for 
clearing a plane to descend has the following 
form: 
 
  (procedure 
      (index   (clear-to-descend ?plane ?altitude)) 
      (step s1 (determine-callsign-for-plane ?plane 

 => ?callsign)) 
      (step s2 (say ?callsign) (waitfor ?s1) 
      (step s3 (say “descend and maintain flight  

level”) (waitfor ?s2)) 
      (step s4 (say ?altitude) (waitfor ?s3)) 
      (step s5 (terminate) (waitfor ?s4))) 
 
The index clause in the procedure above 
indicates that the procedure should be retrieved 
from memory whenever a goal to clear a given 
plane for descent to a particular altitude 
becomes active.  Step clauses prescribe 
activities that need to be performed to 
accomplish this.  The first step activates a new 
goal: to determine the identifying callsign for 
the specified airplane and to make this 
information available to other steps in the 
procedure by associating it with the variable 
?callsign.   Achieving this step entails finding a 
procedure whose index clause matches the form  
 
    (determine-callsign-for-plane ?plane)  
 
and then executing its steps.  After this, say 
actions prescribed in steps s2, s3, and s4 are 
carried out in order.  This completes the phrase 
needed to clear a descent.  Finally, step s5 is 
executed, terminating the procedure.   
 
The activities defined by steps of a PDL 
procedure are assumed to be concurrently 
executable.  When a particular order is desired, 
this must be specified explicitly using the 
waitfor clause.  In this case, all steps but the 
first are defined to wait until some other task 
has terminated.  Second, although this task is 
complete when all of its steps are complete, it is 
sometimes desirable to allow procedures to 

specify more complex, variable completion 
conditions.  For example, it may be useful to 
allow race conditions in which the procedure 
completes when any of several steps are 
complete.  Thus, rather than handle termination 
uniformly for all procedures, termination 
conditions must be notated explicitly in each 
procedure.   
 
The ability to specify how concurrent execution 
should be managed and to specialize termination 
conditions for each procedure exemplify an 
attempt with PDL to provide a uniquely flexible 
and expressive language for task analysis.  In 
particular, PDL can be considered an extension 
to the GOMS approach (Card, 1983) in which 
tasks are analyzed in terms of four constructs: 
goals, operators, methods, and selection rules.  
Procedure structures in PDL combine and 
extend the functionality provided by GOMS 
methods and selection rules.  GOMS operators 
represent basic skills such as pressing a button, 
saying a phrase, or retrieving information from 
working memory; executing an operator 
produces action directly.  PDL does not produce 
action directly, but instead sends action requests 
(signals) to cognitive, perceptual, and motor 
resources in the APEX  resource architecture.  
What action, if any, should be executed is 
determined by the relevant resource model. 
 
It is important to distinguish PDL procedures 
from externally represented procedures such as 
those that appear in manuals.  PDL procedures 
are internal (cognitive) representations of how to 
accomplish a task (Anderson, 1995).  In some 
cases, as above, there is a one to one 
correspondence between the external 
prescription for accomplishing a task and how it 
is represented internally.  But written procedures 
might also correspond to multiple PDL 
procedures, especially when written procedures 
cover conditional activities (i.e. carried out 
sometimes but not always) or activities that take 
place over a long period of time.  Similarly, 
PDL procedures may describe behaviors such as 
how to scan the radar display that result from 
adaptive learning processes and are never 
explicitly taught. 
 
4.2  Approximating adaptive learning 
 
Task analysis is often used to help designers 
better understand how human operators function 



in existing human-machine systems (Hutchins, 
1995).  In such cases, task analysis can be 
usefully (though not altogether accurately) 
viewed as a linear process in which a task 
analyst observes operators performing their job, 
infers underlying cognitive activities based on 
regularities in overt behavior, and then 
represents these activities in the context of some 
general cognitive model.   
 
A different process is required to predict how 
tasks will be carried out with newly designed 
equipment and procedures. In particular, 
analysis can no longer start with observations of 
overt behavior since no real operators have been 
trained with the new procedures and no physical 
realization of the new equipment exists.  
Instead, cognitive structures underlying behavior 
must be inferred based on task requirements and 
an understanding of the forces that shape task-
specific cognition: human limitations, adaptive 
learning processes, and regularities in the task 
domain. 
 
For example, to model how a controller might 
visually scan the radar display to maintain 
awareness of current airspace conditions, an 
analyst should consider a number of factors.  
First, human visual processing can only attend 
to, and thus get information about, a limited 
portion of the visual field at any one time.  By 
attending to one region of the display, a 
controller obtains an approximate count of the 
number of planes in that region. He or she 
identifies significant plane clusters or other 
Gestalt groups and can detect planes that differ 
from all others in the region on some simple 
visual property such as color or orientation.   
 
But to ascertain other important information 
requires a narrower focus of attention.  For 
example, to determine that two planes are 
converging requires attending exclusively to 
those planes.  Similarly, to determine that a 
plane is nearing a position from which it should 
be rerouted requires attending to the plane or to 
the position. These visual processing constraints 
have important implications for how visual 
scanning should be modeled.  For example, to 
maintain adequate situation awareness, the 
model should shift attention not only to display 
regions but also to individual planes within 
those regions. 
 

An assumption that the human operator adapts 
to regularities in the task environment has 
further implications.  For instance, if a certain 
region contains no routing points and all planes 
in the region normally travel in a single 
direction, there would usually be no reason to 
attend to any particular plane unless it strayed 
from the standard course.  Adaptive mechanisms 
could modify routine scanning procedures to 
take advantage of this by eliminating 
unnecessary attention shifts to planes in that 
region.  This saves the visual attention resource 
for uses more likely to yield important 
information. 
 
A fully mature approach to human modeling 
will require techniques for identifying or 
predicting regularities in the domain and 
detailed guidelines for predicting how adaptive 
learning processes will shape behavior in 
accordance with these regularities.  A few such 
guidelines have been considered in discussions 
of particular knowledge representation problems 
(Freed, 1997a), and somewhat more general 
principles were discussed as part of APEX’s 
overall modeling methodology (Freed, 1997b).  
However, the present work has only begun to 
address this important issue.   
 
5 Scenario development 
 
The third step in preparing an APEX simulation 
run is to develop scenarios.  A scenario 
specification includes any parameters and 
conditions required by the simulated world.  In 
general, these can include initial state, domain-
specific rate and probability parameters, and 
specific events to occur over the course of a 
simulation (see list below).  In the current 
implementation of the simulation, initial 
conditions do not vary.  In particular, the 
simulated controller always begins the task with 
an empty airspace (rather than having to take 
over an active airspace) and with the same set of 
goals. The goals are to maintain safe separation 
between all planes, get planes to their 
destination in a timely fashion, stay aware of 
current airspace conditions, and so on.   
 
?? initial agent goals  
?? initial operating conditions 
?? specialized parameters such as the rate 

and likelihood of certain events 



?? specific events to occur during the 
simulation run 

 
At minimum, a scenario must include a duration 
D and an aircraft count C.  The scenario control 
component will randomly generate C plane 
arrival events over the interval D, with aircraft 
attributes such as destination, aircraft type, and 
point of arrival determines according to default 
probabilities.  For instance, the default specifies 
that a plane’s destination will be LAX with p(.7) 
and Santa Monica airport with p(.3).  The 
default includes conditional probabilities – e.g. 
the destination airport affects the determination 
of airplane type – e.g. a small aircraft such as a 
Cherokee is much more likely to have Santa 
Monica as its destination. 
 
Scenario definitions can alter these default 
probabilities, and thereby affect the timing and 
attributes of events generated by the scenario 
control component.  Users can also specify 
particular events to occur at particular times.  
For example, one might want to specify a 
number of small aircraft arrivals all around the 
same time in order to check how performance is 
affected by a sudden increase in workload. 
Currently, arrivals are the only kind of event 
that the scenario control component generates 
randomly.  Special events such as runway 
closures and aircraft equipment failures must be 
specified individually. 
 
6 Running the Simulation 
 
To employ the operator model, world model, 
and scenario control elements in simulation 
requires a simulation engine.  APEX currently 
uses the simulation engine provided by CSS 
(Remington, et al., 1990a), a simulation package 
developed at NASA Ames that also includes a 
model development environment, a graphical 
interface for observing an ongoing simulation, 
and mechanisms for analyzing and graphing 
temporal data from a simulation run.   
 
CSS simulation models consist of a network of 
process and store modules, each depicted as a 
“box” on the graphical interface.  Stores are 
simply repositories for information, though they 
may be used to represent complex systems such 
as human working memory. Process modules, as 
the name implies, cause inputs to be processed 

and outputs to be produced.  A process has five 
attributes: (1) a name; (2) a body of LISP code 
that defines how inputs are mapped to outputs; 
(3) a set of stores from which it takes input; (4) 
a set of stores to which it provides output; and 
(5) a stochastic function that determines its 
finishing time – how much simulated time is 
required for new inputs to be processed and the 
result returned as output. A process is idle until 
a state change occurs in any of its input stores.  
This activates the process, causing it to produce 
output in accordance with its embedded code 
after an interval determined by its characteristic 
finishing time function. 
 
The CSS simulation engine is an event-driven 
simulator.  Unlike time-slice simulators, which 
advance simulated time by a fixed increment, an 
event-driven simulator advances until the next 
active process is scheduled to produce an output.  
This more efficient method makes it practical to 
model systems whose components need to be 
simulated at vastly different levels of temporal 
granularity.  In particular, the APEX human 
operator model contains perceptual processes 
that occur over tens of milliseconds, motor and 
cognitive processes that take hundreds of 
milliseconds and (links to) external simulated 
world processes modeled at the relatively coarse 
temporal granularity of seconds.  CSS provides 
further flexibility by allowing processes to run 
concurrently unless constrained to run in 
sequence.   
 
The process of incorporating a model into a CSS 
framework is fairly straightforward, but a user 
must decide how much detail to include 
regarding the model’s temporal characteristics.  
In the simplest case, one could model the world 
and the operator each as single processes.  
Because processes can have only a single 
finishing time distribution, such a model would 
assume a uniform duration for all operator 
activities.  For instance, a speech act, a gaze 
shift, a grasp action, and a retrieval from 
memory would all require the same interval. 
The process-store network used to simulate and 
visualize APEX behavior models each 
component of the APEX architecture as a 
separate process. 
 
Once the process-store network has been 
constructed, and simulated world and APEX 
elements incorporated into the code underlying 



processes, the simulation can be run.  CSS 
provides a “control panel” window with several 
buttons.  SHOW toggles the visualization 
function, causing information in  processes and 
stores to be displayed and dynamically updated.  
START and STOP initiate and freeze a 
simulation run.  STEP causes time to advance to 
the next scheduled process finish event, runs the 
scheduled process, and then freezes the 
simulation. 
 
7 Simulation analysis 
 
The final step in using APEX is to analyze the 
results of simulation.  CSS provides tools for 
analyzing and graphing temporal aspects of 
behavior.  For example, if interested in 
predicting how much time the controller took to 
respond when a new airplane appeared on the 
radar display, the modeler could specify that 
interest when constructing the process-store 
network (see Remington et al., 1990a for how 
this is accomplished).  CSS automatically stores 
specified timing values from multiple simulation 
runs and graphs the data on demand. 
 
7.1  Design-facilitated errors  
 
APEX is intended to help predict design-
facilitated errors – i.e. operator errors that 
could be prevented or minimized by modifying 
equipment or procedure design.  The current 
approach assumes that people develop 
predictable strategies for circumventing their 
innate limitations and that these strategies make 
people prone to error in certain predictable 
circumstances.  For instance, to compensate for 
limited memory, people sometimes learn to rely 
on features of their task environment to act as a 
kind of externalized memory.  If, for whatever 
reason, the relied on feature is absent when it 
should be present (or vice-versa), error may 
result. 
 
In the wrong runway scenario described in 
section 2, the controller’s error stemmed from 
reliance on a visually observable feature – an 
imbalance in the number of planes approaching 
to each runway to signal – to act as a reminder 
of runway closure.  When workload dropped too 
low for this feature to remain observable, the 
controller reverted to a behavior consistent with 
its absence.  In particular, the controller selected 

a runway based on factors that had nothing to do 
with runway availability such as airplane type 
and relative proximity to each runway approach 
path.  
 
When this error occurs in simulation, the 
sequence of events that led up to it can be 
extracted from the simulation trace, a record of 
all the events that occurred during the 
simulation run.  However, this “raw” event data 
is not very useful to a designer.  To inform the 
design process, the events must be interpreted in 
light of general knowledge about human 
performance.  For instance, most errors can be 
partially attributed to the non-occurrence of 
normal events.  The raw simulation data will not 
contain any reference to these events, so 
normative knowledge must be used to complete 
the causal story that explains the error.  
 
As an additional constraint on what constitutes a 
useful analysis, the explanation for an error 
assign blame to something that the designer has 
control (Owens, 1991, makes a similar point).  
For instance, citing human memory limitations 
as a cause of the above described error is correct, 
but not very useful.  In contrast, blaming the 
failure on the absence of expected perceptual 
support for memory implies ways of fixing the 
problem.  The designer could enforce the 
perceptual support (in this instance, by insuring 
that planeload never drops too low), provide 
alternative perceptual support (a runway closure 
indicator on the display), or train the operator 
not to expect perceptual support and to take 
other measures to support memory. 
 
7.2  Error patterns 
 
We would like to facilitate the generation of 
analyses in which non-occurring normal events 
are made explicit and causal explanations trace 
back to elements of the task environment that 
the designer might be able to control. One way 
to do this is to represent general knowledge 
about the cause of error in error patterns.  An 
error pattern is a specific type of explanation 
pattern (Schank, 1986) –  i.e. a stereotypical 
sequence of events that end in some kind of 
anomaly that needs to be explained (an error in 
this case).  When an error occurs in simulation, 
error patterns whose characteristic anomaly type 
matches the “observed” error are compared 



against events in the simulation trace.  If the 
pattern matches events in the simulation trace, 
the patter is considered an explanation of the 
error. 
 
Error patterns derive from a general theory of 
what causes error.  To make the idea of error 
patterns concrete, the example below describes a 
simpler form of error that the one described in 
section 2. 
 
Because an APEX human operator model can 
only be a coarse approximation of a real human 
operator, error predictions emerging from 
simulation will not necessarily be problems in 
reality.  The designer must evaluate the 
plausibility and seriousness of any error 
predictions on the basis of domain knowledge 
and a common sense understanding of human 
behavior.  Current scientific knowledge about 
human error-making is inadequate for 
prediction.  The APEX approach only attempts 
to make designers more effective at applying 
their common sense knowledge about when and 
why people make errors.  Thus, the need for the 
user to evaluate model predictions should be 
considered compatible with the APEX approach. 
 
 One other aspect of simulation analysis presents 
more of a problem.  Currently, the modeler must 
interpret simulation event data “by hand” on the 
basis of informally specified error pattern 
knowledge.  This approach is far from ideal and, 
given the massive mount of simulation data that 
must be examined, probably unacceptable for 
practical use.  To automate analysis, simulation 
mechanisms must be augmented to check 
observed (i.e. simulated) behavior against 
expected behavior and to signal errors when 
specified deviations occur.  Error patterns 
indexed by the anomaly and successfully 
matched against the simulation trace would then 
be output to the user as error predictions. 
 
8  Conclusion 
 
In safety-critical domains, such as nuclear 
power, aerospace, military, medical, and 
industrial control systems, the cost and risk of 

implementing new technology are major barriers 
to progress. The fear of innovation is not based 
on superstition, but on the common experience 
of failure in complex system development 
projects (Curtis et al., 1988). Retaining the 
status quo, however, becomes less and less 
tenable as existing systems become obsolete and 
the cost and risk of maintaining them escalate. 
 
Replacement or significant upgrading of such 
safety-critical systems eventually becomes 
inevitable. Therefore, it is necessary to attack 
the core problem, namely, the lack of a 
systematic design method for complex human-
computer systems. It is the absence of such a 
methodology that lies at the root of valid 
concerns about the safety (Leveson, 1995) and 
economic benefit (Landauer, 1995) of new 
human-computer systems. 
 
APEX is intended to be a contribution toward 
improving the design of safety-critical human-
computer systems, for example, the next-
generation air traffic control system. APEX 
incorporates and extends many of the functional 
elements of the MIDAS system (Corker, 1993,  
1995), particularly computational models of the 
physical and informational environment: 
equipment, geography, regulatory constraints, 
documents, and displays. 
 
The key innovations of APEX are its integrated 
approaches to task analysis, procedure 
definition, and intelligent, resource-constrained 
multi-tasking. This paper has presented a step-
by-step description of how APEX is used, from 
scenario development through trace analysis.  
 
The development of APEX is itself an exercise 
in iterative design. Current work is aimed at 
extending the modeling framework, developing 
new applications, and validating partial models 
(see Homer, 1997). The goal remains to reduce 
the cost and risk of the implementation of 
complex human-computer systems, by 
addressing key human-interaction issues as early 
as possible in the design process. 
 
 



 

 
Example:  
  
The UNIX command rm normally deletes files, thus freeing up hard drive space, but can be redefined to 
move files into a “trash” directory instead.  A user unaware that rm has been redefined may try to use it 
to make space on the disk for a new file.  After typing the command, the system returns a new command 
line prompt but does not describe the outcome of the command just given.  As this response was the 
expected result of a successful delete, the user believes that the action succeeded in freeing up disk space. 
 
The following general causal sequence constitutes an error pattern that can be specified to match the 
above incident: 

 

agent wants G, achievable
by action A with prereq P

agent believes not(P)

agent believes action B
results in P and observable
event E

B actually results in Q  (=P)
which produces event E

TIME-1
agent does B and
  observes E

agent believes P
achieved

agent believes A
will achieve G

agent does A which
fails to achieve G

TIME-2 TIME-3

G  =  get non-local file
A  =  ftp <file-name>..
B  =  rm <file-name>
P  =  disk space available
Q  =  disk space unchaned
E  =  command line prompt
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